大家好,三角函數公式大全表格0到360相信很多的網友都不是很明白,包括0到360度三角函數值表圖也是一樣,不過沒有關系,接下來就來為大家分享關于三角函數公式大全表格0到360和0到360度三角函數值表圖的一些知識點,大家可以關注收藏,免得下次來找不到哦,下面我們開始吧!
三角函數最值公式表格
三角函數值對照表及常用的三角函數的值如下:
sin0=sin0°=0,
cos0=cos0°=1,
tan0=tan0°=0sin15=0.650,
sin30°=1/2,
tan30°=√3/3sin45=0.851,
sin45°=√2/2cos45=0.525,
cos45°=sin45°=√2/2,
sin60°=√3/2,
cos60°=1/2,
tan60°=√3。
三角函數的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域,另一種定義是在直角三角形中。
三角函數六個公式
函數名正弦余弦正切余切正割余割
在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有
正弦函數sinθ=y/r
余弦函數cosθ=x/r
正切函數tanθ=y/x
余切函數cotθ=x/y
正割函數secθ=r/x
余割函數cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨于被淘汰的函數:
正矢函數versinθ=1-cosθ
余矢函數coversθ=1-sinθ
正弦(sin):角α的對邊比上斜邊
余弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
余切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
余割(csc):角α的斜邊比上對邊
同角三角函數間的基本關系式:
·平方關系:
sin^2(α)+cos^2(α)=1cos^2a=(1+cos2a)/2
tan^2(α)+1=sec^2(α)sin^2a=(1-cos2a)/2
cot^2(α)+1=csc^2(α)
·積的關系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的對邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對邊比鄰邊,
·三角函數恒等變形公式
·兩角和與差的三角函數:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函數:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx=[sin(n+1)x+sinnx-sinx]/2sinx
證明:
左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx(積化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右邊
等式得證
sinx+sin2x+...+sinnx=-[cos(n+1)x+cosnx-cosx-1]/2sinx
證明:
左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=-[cos(n+1)x+cosnx-cosx-1]/2sinx=右邊
等式得證
[編輯本段]三角函數的誘導公式
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
三角函數公式大全
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))
向左轉|向右轉
二、降冪公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推導公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、兩角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
五、和差化積
1、sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
2、sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
3、cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
4、cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
六、積化和差
1、sinαsinβ=[cos(α-β)-cos(α+β)]/2
2、sinαcosβ=[sin(α+β)+sin(α-β)]/2
3、cosαsinβ=[sin(α+β)-sin(α-β)]/2
七、誘導公式
1、(-α)=-sinα、cos(-α)=cosα
2、tan(—a)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、sin(π/2+α)=cosα
3、3cos(π/2+α)=-sinα
4、(π-α)=sinα、cos(π-α)=-cosα
5、5tanA=sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
八、銳角三角函數公式
1、sinα=∠α的對邊/斜邊
2、α=∠α的鄰邊/斜邊
3、tanα=∠α的對邊/∠α的鄰邊
4、cotα=∠α的鄰邊/∠α的對邊
sin全部公式
sin函數是三角函數中的一種,表示一個角的正弦值。它的一般公式為sin(x)=(e^(ix)-e^(-ix))/(2i),其中x為角的弧度。此外,sin函數還具有一些特殊值和性質,如sin(0)=0、sin(π/2)=1、sin(π)=0、sin(3π/2)=-1等。它在數學和物理學中廣泛應用,用于描述周期性現象和波動等。除此之外,sin函數還可以通過泰勒級數展開、歐拉公式、和差化積公式等方式表達。
sin cos tan0到360度數公式
1,sin90°=1,sin270°=-1
2、余弦:cos0°=cos360°=1,cos90°=cos270°=0,cos180°=-1
3、正切:tan0°=tan180°=tan360°=0,tan90°和tan270°無意義。
一、正弦函數和余弦函數積的關系
sinα=tanα×cosα(即sinα/cosα=tanα)
cosα=cotα×sinα(即cosα/sinα=cotα)
tanα=sinα×secα(即tanα/sinα=secα)
二、倍角半角公式
sin(2α)=2sinα·cosα=2/(tanα+cosα)
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
sin(α/2)=±√((1-cosα)/2)
三、同角三角函數的基本關系式
倒數關系:tanα·cotα=1、sinα·cscα=1、cosα·secα=1;
商的關系:sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的關系:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方關系:sin2α+cos2α=1。
END,本文到此結束,如果可以幫助到大家,還望關注本站哦!