- N +

三角函數的所有公式(16個誘導公式圖片)

很多朋友對于三角函數的所有公式和16個誘導公式圖片不太懂,今天就由小編來為大家分享,希望可以幫助到大家,下面一起來看看吧!

三角函數公式表

完整三角函數公式表

三角函數公式包括基本三角函數公式和擴展三角函數公式?;救呛瘮倒桨ㄕ?、余弦、正切、余切四種,可以表示為

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)

擴展三角函數公式包括各種角度的正弦、余弦、正切、余切值,例如

sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3cot30°=√3cot45°=1cot60°=√3/3sin15°=(√6-√2)/4sin75°=(√6+√2)/4cos15°=(√6+√2)/4cos75°=(√6-√2)/4

三角函數公式大全

1.兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

2.倍角公式

tan2A=2tanA/(1-tan^2A)

Sin2A=2SinA?CosA

Cos2A=Cos^2A--Sin^2A

=2Cos^2A—1

=1—2sin^2A

三倍角公式

sin3A=3sinA-4(sinA)^3;

cos3A=4(cosA)^3-3cosA

tan3a=tana?tan(π/3+a)?tan(π/3-a)

半角公式

sin(A/2)=√{(1--cosA)/2}

cos(A/2)=√{(1+cosA)/2}

tan(A/2)=√{(1--cosA)/(1+cosA)}

cot(A/2)=√{(1+cosA)/(1-cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

3.和差化積公式

sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

積化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

誘導公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinA/cosA

萬能公式

sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}

cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}

tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

其他非重點三角函數

csc(a)=1/sin(a)

sec(a)=1/cos(a)

雙曲函數

sinh(a)=[e^a-e^(-a)]/2

cosh(a)=[e^a+e^(-a)]/2

tgh(a)=sinh(a)/cosh(a)

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式-和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

拓展知識:

三角函數口訣

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割。

中心記上數字1,連結頂點三角形。向下三角平方和,倒數關系是對角。

頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小。

變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變。

將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,

余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用。

1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范。

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍。

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

三角函數六個公式

函數名正弦余弦正切余切正割余割

在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有

正弦函數sinθ=y/r

余弦函數cosθ=x/r

正切函數tanθ=y/x

余切函數cotθ=x/y

正割函數secθ=r/x

余割函數cscθ=r/y

(斜邊為r,對邊為y,鄰邊為x。)

以及兩個不常用,已趨于被淘汰的函數:

正矢函數versinθ=1-cosθ

余矢函數coversθ=1-sinθ

正弦(sin):角α的對邊比上斜邊

余弦(cos):角α的鄰邊比上斜邊

正切(tan):角α的對邊比上鄰邊

余切(cot):角α的鄰邊比上對邊

正割(sec):角α的斜邊比上鄰邊

余割(csc):角α的斜邊比上對邊

同角三角函數間的基本關系式:

·平方關系:

sin^2(α)+cos^2(α)=1cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α)sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·積的關系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的對邊比斜邊,

余弦等于角A的鄰邊比斜邊

正切等于對邊比鄰邊,

·三角函數恒等變形公式

·兩角和與差的三角函數:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函數:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx=[sin(n+1)x+sinnx-sinx]/2sinx

證明:

左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx(積化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右邊

等式得證

sinx+sin2x+...+sinnx=-[cos(n+1)x+cosnx-cosx-1]/2sinx

證明:

左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=-[cos(n+1)x+cosnx-cosx-1]/2sinx=右邊

等式得證

[編輯本段]三角函數的誘導公式

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

三角函數的五個公式

1、

(面積=底×高÷2。其中,a是三角形的底,h是底所對應的高)注釋:三邊均可為底,應理解為:三邊與之對應的高的積的一半是三角形的面積。這是面積法求線段長度的基礎。

2、

(其中,三個角為∠A,∠B,∠C,對邊分別為a,b,c。參見三角函數)

3、

(l為高所在邊中位線)

4、

(海倫公式),其中

5、秦九韶公式(與海倫公式等價)

6、

(其中,R是外接圓半徑)

7、

(其中,r是內切圓半徑,p是半周長)

8、在平面直角坐標系內,A(a,b),B(c,d),C(e,f)構成之三角形面積為

。A,B,C三點最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規則取,可能會得到負值,但只要取絕對值就可以了,不會影響三角形面積的大小。

9、

(正三角形面積公式,a是三角形的邊長)

10、

(其中,R是外接圓半徑;r是內切圓半徑)

11、

12、設三角形三邊為AC,BC,AB,點D垂直于AB,為三角形ABC的高由于DB=BC*cosB,cosB可用余弦定理式表示。

三角形函數九個公式

1.是的,三角形函數有九個公式。2.這九個公式分別是:正弦函數的定義、余弦函數的定義、正切函數的定義、余切函數的定義、正割函數的定義、余割函數的定義、正弦函數與余弦函數的關系、正切函數與余切函數的關系、正割函數與余割函數的關系。3.三角形函數的九個公式是數學中研究三角函數性質和關系的基礎,通過這些公式可以推導出其他與三角函數相關的公式和性質,進一步擴展了三角函數的應用范圍和研究領域。

關于三角函數的所有公式的內容到此結束,希望對大家有所幫助。

返回列表
上一篇:
下一篇: