大家好,今天來為大家解答三角函數所有公式大全這個問題的一些問題點,包括30°,45°,60°角的三角函數值也一樣很多人還不知道,因此呢,今天就來為大家分析分析,現在讓我們一起來看看吧!如果解決了您的問題,還望您關注下本站哦,謝謝~
三角函數公式表
完整三角函數公式表
三角函數公式包括基本三角函數公式和擴展三角函數公式?;救呛瘮倒桨ㄕ?、余弦、正切、余切四種,可以表示為
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)
擴展三角函數公式包括各種角度的正弦、余弦、正切、余切值,例如
sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3cot30°=√3cot45°=1cot60°=√3/3sin15°=(√6-√2)/4sin75°=(√6+√2)/4cos15°=(√6+√2)/4cos75°=(√6-√2)/4
三角函數公式大全
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))
向左轉|向右轉
二、降冪公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推導公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、兩角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
五、和差化積
1、sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
2、sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
3、cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
4、cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
六、積化和差
1、sinαsinβ=[cos(α-β)-cos(α+β)]/2
2、sinαcosβ=[sin(α+β)+sin(α-β)]/2
3、cosαsinβ=[sin(α+β)-sin(α-β)]/2
七、誘導公式
1、(-α)=-sinα、cos(-α)=cosα
2、tan(—a)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、sin(π/2+α)=cosα
3、3cos(π/2+α)=-sinα
4、(π-α)=sinα、cos(π-α)=-cosα
5、5tanA=sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
八、銳角三角函數公式
1、sinα=∠α的對邊/斜邊
2、α=∠α的鄰邊/斜邊
3、tanα=∠α的對邊/∠α的鄰邊
4、cotα=∠α的鄰邊/∠α的對邊
三角函數五大類公式
了解三角函數公式
三角函數公式大全:和差化積、積化和差、二倍角、半角、萬能降冪
1、公式一:設α為任意角,終邊相同的角的同一三角函數的值相等
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
2、公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
3、公式三:任意角α與-α的三角函數值之間的關系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
4、公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
5、公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、公式六:π/2±α與α的三角函數值之間的關系
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
三角函數多少個公式
一共12個,分別是Sin30度,Sin45度Sin60度,Sin90度等
高中三角函數所有公式
sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-cosAsinB;cos(A+B)=cosAcosB-sinAsinB。
?
高中三角函數公式數學公式大全
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan^2A)
Sin2A=2SinA?CosA
Cos2A=Cos^2A--Sin^2A
=2Cos^2A—1
=1—2sin^2A
三倍角公式
sin3A=3sinA-4(sinA)^3;
cos3A=4(cosA)^3-3cosA
tan3a=tana?tan(π/3+a)?tan(π/3-a)
半角公式
sin(A/2)=√{(1--cosA)/2}
cos(A/2)=√{(1+cosA)/2}
tan(A/2)=√{(1--cosA)/(1+cosA)}
cot(A/2)=√{(1+cosA)/(1-cosA)}?
tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)
和差化積
sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
關于本次三角函數所有公式大全和30°,45°,60°角的三角函數值的問題分享到這里就結束了,如果解決了您的問題,我們非常高興。